网络技术创新预测与评估开题报告3篇

网络技术创新预测与评估开题报告3篇是为您推荐的内容,希望对您的学习工作带来帮助。

网络技术创新评估报告网络技术创新预测与评估开题报告3篇

网络技术创新预测与评估开题报告第1篇

一、论文名称、课题来源、选题依据

论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-B·t)])及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:Y=L·exp(-B·t))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时代发展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评

估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础,BP神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于BP神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于BP神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以BP神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于BP神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于BP神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的

基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。

七、论文研究的进展计划

2003.07-2003.09:完成论文开题。

2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。

2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。

2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。

2004.04-2004.06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998

[02]吴贵生.技术创新管理.北京:清华大学出版社2000

[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997

[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.2000/2.

[05]王亚民、朱荣林.风险投资项目ECV评估指标与决策模型研究.风险投资.2002/6

[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策.2002/6

[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究.2002/5

[08]陈劲、龚焱等.技术创新信息源新探.中国软科学.2001/1.pp86-88

[09]严太华、张龙.风险投资评估决策方法初探.经济问题.2002/1

[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究.2001/4

<11>孙冰.企业产品开发的评价模型及方法研究.中国管理科学.2002/4

[12]诸克军、杨久西、匡益军.基于人工神经网络的石油勘探有利性综合评价.系统工程理论与实践.2002/4

[13]杨力.基干BP神经网络的城市房屋租赁估价系统设计.中国管理科学.2002/4

网络技术创新预测与评估开题报告第2篇

一、课题来源、选题依据

  课题来源:单位自拟课题或省政府下达的研究课题

  选题依据:

  技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

  二、本课题国内外研究现状及发展趋势

  现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

  (1)趋势外推法。指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势和规律将继续的前提下, 将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家raymond pearl提出的pearl曲线(数学模型为: y=l∕[1+a?exp(-b·t)] )及英国数学家和统计学家gompertz提出的gompertz曲线(数学模型为: y=l·exp(-b·t))皆属于生长曲线, 其预测值y为技术性能指标, t为时间自变量, l、a、b皆为常数。ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的人数成正比, 主要适用于新技术、新产品的扩散预测。

  (2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果关系模型, 预测技术的发展变化。相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

  (3)专家预测法。以专家意见作为信息来源, 通过系统的调查、征询专家的意见, 分析和整理出预测结果。专家预测法主要有: 专家个人判断法、专家会议法、头脑风暴法及德尔菲法等, 其中, 德尔菲法吸收了前几种专家预测法的长处, 避免了其缺点, 被认为是技术预测中最有效的专家预测法。

  趋势外推法的预测数据只能为纵向数据, 在进行产品技术创新预测时, 只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势, 并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中, 对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推, 而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测, 但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式, 而所得到的回归预测模型往往只能考虑少数几种主要影响因素, 略去了许多未考虑的因素, 所以, 所建模型对实际问题的表达能力也不够准确, 预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验, 往往带有主观性, 难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献, 为企业技术创新的预测提供了科学的方法论, 但在新的经济和市场环境下, 技术创新预测的方法和技术应有新的丰富和发展, 以克服自身的不足, 更进一步适应时代发展的需要, 为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

  目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析后, 再作综合评估。在综合评估中所用的方法主要有: delphi法(专家法)、ahp法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。

  这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以bp神经网络作为基于多因素的技术创新预测和评估模型构建的基础, bp神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。

  据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下, 以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方法的有益补充和完善。

  三、论文预期成果的理论意义和应用价值

  本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的预测和评估, 有利于推动技术创新预测和评估方法的发展。

  本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有利于提高预测的正确性; (2)提供一种基于bp神经网络的综合评估方法, 有利于提高评估的科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。

  四、课题研究的主要内容

  研究目标:

  以bp神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体系进行实证分析, 使研究具有一定的理论水平和实用价值。

  研究内容:

  1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新预测和评估指标体系, 并研究其量化和规范化的原则及方法。

  2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时, 需要一组决定其相对重要性的初始权重, 权重的确定需要基本的原则作支持。

  3、基于bp神经网络的技术创新预测和评估模型研究。 根据技术创新预测的特点, 以bp神经网络为基础, 构建基于多因素的技术创新预测和评估模型。

  4、

  5、基于bp神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料, 构建基于bp神经网络的技术创新预测和评估模型的学习样本, 对预测和评估模型进行自学习和训练, 使模型适合实际情况。

  6、基于bp神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景, 对基于bp神经网络的技术创新预测和评估技术进行实证研究。

  创新点:

  1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面, 一种是采用传统的指标体系, 另一种是采用国外先进国家的指标体系, 如何结合我国实际当前经济形势, 参考国外先进发达国家的研究工作, 建立一套适合于我国企业技术创新预测和评估指标体系, 此为本研究要做的首要工作, 这是一项创新。

  2、研究基于bp神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能, 能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题, 本项目首次将神经网络技术引入企业的技术创新预测和评估, 这也是一项创新。

  五、课题研究的

  基本方法、技术路线的可行性论证

  1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素, 并研究影响因素间的内在联系, 确定其相互之间的重要度, 探讨其量化和规范化的方法, 将国外先进国家的研究成果与我国具体实际相结合, 建立我国企业技术创新预测和评估的指标体系。

  2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中, 发现问题、分析问题, 归纳和总结出具有共性的东西, 探索技术创新预测与宏观因素与微观因素之间的内在关系。

  3、采用先简单后复杂的研究方法。对基于bp神经网络的技术创新预测和评估模型的研究, 先从某一行业出发, 定义模型的基本输入因素, 然后, 逐步扩展, 逐步增加模型的复杂度。

  4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合, 进行实证研究, 在实践中丰富和完善, 研究出具有科学性和实用性的成果。

  六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

  本人长期从事市场营销和技术创新方面的研究工作, 编写出版了《现代市场营销学》和《现代企业管理学》等有关著作, 发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文, 对企业技术创新的预测和评估有一定的理论基础, 也从事过企业产品技术创新方面的策划和研究工作, 具有一定的实践经验, 与许多企业有密切的合作关系, 同时, 对神经网络技术也进行过专门的学习和研究, 所以, 本项目研究的理论基础、技术基础及实验场所已基本具备, 能顺利完成本课题的研究, 取得预期的研究成果。

  七、论文研究的进展计划

网络技术创新预测与评估开题报告第3篇

上海造艺网络技术有限公司(下简称“造艺技术”)成立于2015年,初衷是通过由造艺技术研发的个人风险等级评估报告助力整个社会征信体系建设,帮助持牌金融机构在风控审核过程中降低借贷信用风险,保护金融资产安全,维护整个社会的金融体系稳定。

造艺技术所研发的个人风险等级评估报告一经问世即吸引了业界广泛关注,主要原因就在于它填补了个人信用体系建设在国内的空白,一炮而红是以创新技术硬实力为根本的,这份报告既对B端机构,诸如以银行为首的持牌金融机构产生价值,更对广大C端用户的个人信用行为获取依据。

造艺技术个人风险等级评估报告的含金量具体体现在:智能反欺诈、大数据建模、反欺诈决策引擎方面,这对银行及金融持牌机构金融资产前置起到关键决策作用。这份报告具备500项数据指标进行测评,几乎涵盖了个人信用行为的方方面面,而升级版的报告中更是涵盖了公积金情况及社保参保情况作为信用积分的参考模型。

为什么说,造艺技术的个人风险等级评估报告对国内征信市场起到影响深远的意义?这个需要从国内一直以来所缺失的信用体系建设说起,相对美国等征信较为发达的国家所不同的是,中国信用体系格局并未完全成型,仍没有走向成熟,没有面向社会开放的类似美国FICO评分的信用评分,缺乏丰富的征信产品。而造艺技术个人风险等级评估报告的哺一问世,刚好如旱地逢甘霖,蓝海一触即发,因此造艺技术的个人风险等级评估报告俨然成为了中国信用体系的赶早者,成为第一个敢吃螃蟹的勇敢者。

光勇敢是不够的,实力才是硬道理,造艺技术作为一家以科技研发为第一要务的金融科技型黑马企业,对中国信用体系的建设需要继续探索,需要市场的参与、政府的监管,以更高水平的技术投入完成国内信用体系建设的航领者。因此新一代智能反欺诈创新应用是造艺技术风险等级评估报告的核心优势,使反欺诈不再局限于一个点、一个模型、一个技术、一个平台、一个黑名单,而是要做到五维一体,由五个通用维度组成,分别为信用历史、多条共债、黑名单、社交网络、欺诈风险,从五个维度用以评价用户的信用及欺诈风险。

为什么以银行为代表的持牌金融机构会对造艺技术的这份报告如此追捧?因为多年来金融持牌机构的风控一直存在成本高企的困扰,传统反欺诈手法以无法满足日新月异的互联网时代的高速变迁发展,对智能反欺诈风控的需求成为刚需,造艺技术适时推出个人风险等级评估报告即完全契合了银行等机构对风控升级的满足,给银行的贷前资产前置起到重要的保障引领作用。

造艺技术的这份报告的颠覆性革新,重点要从更为海量的C端用户群体说起,放眼国内面对B端机构的征信平台已星罗棋布,而能够对C端群体起到帮助的征信评估报告却凤毛麟角,恰好满足广大互联网新生代的信用评分需求,这份报告360度无死角集结海量数据进行高速流转,让每一个人的征信情况都能在造艺技术个人风险等级评估中得到真实数值并形成有利于个体及机构的信贷解决方案,精准化是取得c端用户青睐的法宝。

以技术取胜,造艺技术多年来不间断投入技术研发,并与资深风控专家、合作伙伴、团队一起,通过运用科技手段充分进行有效验证,从而使报告得以轻松应对日益复杂的欺诈形势。报告的应用场景非常广泛且实用,首先用户在下载银码头APP后,填写并授权相关信息,这时海量数据即会对每一个用户的个人风险情况进行评测,这个时候风险模型、智能反欺诈技术即开始发挥作用,每一个用户都会生成一份独属于自己的评分,这对持牌金融机构提供信贷决策,甚至可以覆盖信贷全流程的整套订制化提供解决方案。

为顺应国内瞬息万变的信用体系发展,造艺技术的评估报告也在持续的更新升级,主要表现在服务内容的精细化程度方面。同时,造艺技术已经与三大运营商进行联合建模,由原先的2300个数据指标,提升到3200个数据指标,另外更为全面的公积金社保数据也成为重点数据加以引导评测。

科技金融时代,大数据必然是核心优势。此外,造艺技术自身的研发优势也不容忽视,旗下专利:鹰眼反欺诈大数据风控评估系统及基于弱变量数据的信用风险评估系统与方法都在风控评估及征信建模领域发挥着极为重要的影响力,目前个人风险等级评估报告已经为各类金融持牌机构高效识别用户风险。

另外一点就是反欺诈决策引擎在个人风险评估中所起到的作用,其实每个决策引擎都包含数量庞杂的算法,这样是为了适用于不同的使用情景,决策引擎作为有力武器,充分体现了造艺技术对数据分析和预测能力。造艺技术牢牢把握机会,以数据为核心优势,持续对国内消费者所缺乏的信贷数据进行挖掘,另外对更加丰富多元的非信贷信用数据或信用相关数据,如电信数据、支付数据、社交数据、电商数据和心理测量数据等等进行合理使用,从而使数据在个人征信领域得到高效运用。

造艺技术国内独家优势正在如星火燎原般扩大影响,立志成为国内第一家对信用体系建设起到指引方向业界领导者作用。一份评估报告对以用户继机构来说均是刚需,机构查阅个人报告,以报告多维度的分析评分为指标,从而决策信贷放款,是通过还是拒绝亦或放多少钱,每一笔贷款的风险都在实实在在的降低,为机构的信贷极大降低资产损失,另外从个人用户来说,以更为简单快捷的方法,打开手机下载银码头APP即可一键获取专属于自身的信用等级及评分,无疑具备超强吸引力,愿意消费一份报告并支付服务费的用户也越爱越多,大家对科技生产力的支付意愿也在逐渐加强。

再来看造艺技术的竞争壁垒问题,造艺技术的个人风险等级评估报告自问世以来,已经得到了广泛的运营,千万级数量用户从中受益,因此众多模仿抄袭造艺技术评估报告模式的平台也在不断生发。因为造艺技术评分系统的强大在于适用场景极广,不光为不同的贷款环节提供风控决策,也适用于不同的信贷产品线,同时还在不断扩大适用人群,价值线持续发酵,也使更多平台打起了以模仿抄袭盈利的功利目的。

目前,很多平台及机构已经看到了反欺诈在前端的价值,造艺技术先行一步,追随着必然会越来越多,更多平台开始自主研发反欺诈系统和反欺诈模型,并以此形成报告模型,有竞争意味着行业更为活跃,造艺技术愿意先人一步在技术创新上不断持续的勇攀高峰,以经验为积累,造艺技术的反欺诈已不仅仅局限于一套逻辑、一套系统,它包括了数据、经验上的积累,自主研发能够结合更多多元业务场景的应用。

对标FICO,造艺技术服务才刚开始。对于国内提供2B服务的金融科技公司来说,造艺技术个人风险等级评估报告在决策引擎方面的参考价值更大。对标FICO,有助于提升国内金融科技公司的发展方向,使造艺技术更上一层楼,在技术上更为扎实的向前迈进一大步。

其中数据服务成为核心价值,按照是否提供数据服务方面,以科技为核心的造艺技术显然属于此列,旨在为中国征信事业添砖加瓦